Momentum and Impulse Practice Problems Physics Academic Classroom Practice

1. A 1300 kg race car is traveling at $80 \mathrm{~m} / \mathrm{s}$ while a $15,000 \mathrm{~kg}$ truck is traveling at $20 \mathrm{~m} / \mathrm{s}$. Which has the greater momentum?
2. A 300 kg snowmobile is traveling at $30 \mathrm{~m} / \mathrm{s}$. How fast would a 200 kg snowmobile need to travel to have the same momentum?
3. A loaded delivery truck has a mass of 5000 kg and is moving at $8 \mathrm{~m} / \mathrm{s}$. The truck is unloaded and travels at $12 \mathrm{~m} / \mathrm{s}$. If the truck has the same momentum in each case, what is the mass of the empt y truck?
4. A force of 4 N is applied to a ball for 0.75 s . What is the impulse?
5. A car pulls a trailer with a force of 250 N . If the total impulse is $900000 \mathrm{~N} *$, for how long is the force applied?
6. A model jet rocket applies an impulse of $20 \mathrm{~N} *$ s over 3 s interval of time. What is the force applied?
7. A 3 kg rock is subject to the force of gravity for 8 s . What is the impulse?
8. A group of people are pushing a stalled car with a mass of 1100 kg . If they push with a net force of 350 Newtons for 10 seconds, what is the car's final velocity?
9. A 40 g superball strikes a wall with a velocity of $10 \mathrm{~m} / \mathrm{s}$ that is normal to the wall. It bounces away at a velocity of $7 \mathrm{~m} / \mathrm{s}$, still normal to the wall. What is the ball's change in momentum? If the bounce lasted 0.1 s , what is the force between the ball and the wall?
10. A 0.105 kg hockey puck is traveling at $12 \mathrm{~m} / \mathrm{s}$ when it is struck by a stick. As a result, the puck travels at 15 m / s in the opposite direction. If the contact between the stick and puck lasted 0.05 s , what was the force?
11. A 400 kg jet dragster's engine produces 5500 N of thrust. If the dragster starts from rest, how fast will it be moving after 1.5 s ? After 3 s ?
12. A loaded barge has a mass of 1500000 kg and is traveling at $3 \mathrm{~m} / \mathrm{s}$. If a tugboat applies an opposing force of 12000 N for 10 s , what is its final velocity? How long will it take to stop the barge? How much force would a tugboat need to apply to stop it in one minute?
13. An Airbus A380 airliner lands at $30 \mathrm{~m} / \mathrm{s}$. Partially loaded, its mass is 480000 kg . The engines app ly reverse thrust for 12 s to slow the plane to $25 \mathrm{~m} / \mathrm{s}$. How much thrust did the engines apply?
14. A stevedore slides a crate along a dock with a 50 kg horizontal force of 175 N . The opposing force of friction is 120 N . If started from rest, what is the crate's final velocity after 0.5 s ?
15. A rocket sled accelerates to $50 \mathrm{~m} / \mathrm{s}$. When the rocket engine stops, the sled skids along its rails. If the coefficient of friction is 0.5 , how fast is the sled moving after 2.50 s ?
16. A car slams on its brakes while traveling at 80 kph . If the coefficient of friction between the tires and the pavement is 0.6 , for how much time does the car skid? What if the pavement is wet, reducing the coefficient to 0.3 ? What if the road is snow-covered, reducing the coefficient to 0.12 ?

	0 0 0 0 0 0 0 0 0 0 0 0 0	$300000 \mathrm{~kg} * \mathrm{~m} / \mathrm{s}$			$\begin{aligned} & \stackrel{\sim}{\underset{\sim}{\sim}} \\ & \underset{\sim}{f} \end{aligned}$	$\begin{aligned} & 0 \\ & 8.8 \\ & 0 \\ & \hline \end{aligned}$	$$		$\stackrel{\sim}{\square}$	z 0 0 i 0 0 0 0 0 0	-			Z 8 0 0 			-	

