General Chemistry II Jasperse Acid-Base Chemistry. Extra Practice Problems

General Types/Groups of problems:

Conceptual Questions. Acids, Bases, and	p1	K_b and pK_b , Base Strength, and using K_b or	p7-10
Conjugates, Miscellaneous		pK_b to Calculate [OH], pOH, pH, and/or [H ⁺]	
Recognizing Strong versus Weak Acids;	p3	Recognizing Acid/Base Properties when	p11
Recognizing Basic versus Nonbasic		Ionics are Dissolved in Water	
pH Calculations; Relationships between pH and pOH	p4	Answers	p12
K_a : Sense + Calculations. Using K_a or pK_a to Calculate	p5		
$[H^+]$ and/or pH; using pH to calculate K_a or p K_a	-		

Conceptual Questions. Acids, Bases, and Conjugates, Miscellaneous

- 1. In the Brønsted–Lowry definition of acids and bases, an acid
 - a. is a proton donor.
 - b. is a proton acceptor.
 - c. forms stable hydrogen bonds.

c. forms stable hydrogen bonds.

2. In the Brønsted–Lowry definition of acids and bases, a base _____

a. is a proton donor.b. is a proton acceptor.

d. breaks stable hydrogen bonds.

d. breaks stable hydrogen bonds.

e. corrodes metals.

e. corrodes metals.

3. In the following reaction in aqueous solution, the acid reactant is ______ and its conjugate base product is

 $CH_3COOH + NH_3 \iff CH_3COO^- + NH_4^+$

d. NH_3 ; NH_4^+

e. $CH_3COOH; H_3O^+$

a. CH₃COOH; CH₃COO⁻

_.

- b. $CH_3COOH; NH_4^+$
- c. NH₃; CH₃COO⁻

4. In the following reaction in aqueous solution, the acid reactant is ______, and its conjugate base product is

	$CH_3NH_2 + HSO_4^- \longleftrightarrow CH_3NH_3^+ + SO_4^{2-}$
a. CH_3NH_2 ; $CH_3NH_3^+$	d. $HSO_4^-; SO_4^{2-}$
b. CH_3NH_2 ; SO_4^{-2-}	e. HSO_4^- ; H_3O+
c. HSO_4^- ; $CH_3NH_3^+$	

5. Which of the following is the conjugate acid of the hydrogen phosphate ion, $HPO_4^{2-?}$?

a.	H_3PO_4	d.	PO_4^{3-}
b.	$H_2PO_4^-$	e.	H_3O^+

b. $H_2PO_4^$ c. HPO_4^{2-}

- 6. Which one of the following is *not* a conjugate acid–base pair?
 - a. NH_3 and NH_4^+ d. HS^- and H_2S b. H_3O^+ and $OH^$ e. NH₃ and NH₂⁻
 - c. $H_2PO_4^-$ and HPO_4^{2-}

7. Which one of the following is a conjugate acid–base pair?

- d. H_2O and O^{2-} a. NH_3 and NH_4^+ e. NaF and F⁻
- b. H_3O^+ and $OH^$ c. NH_2^- and NH_4^+

8. Which one of the following is a conjugate acid-base pair?

a.	NaF and F	d.	$\rm NH_4^+$ and $\rm NH_2$
b.	HNO ₃ and HNO ₂	e.	H ₂ O and H ₂ O ₂

c. HI and I

9. Which one of the following is *not* a conjugate acid–base pair?

- a. NH_3 and NH_2^-
- b. HNO₃ and HNO₂
- c. HI and I^-
- 10. The stronger the acid, ____
 - a. the stronger its conjugate base.
 - b. the weaker its conjugate base.
 - c. the more concentrated the acid.
- d. the less concentrated the conjugate base.

d. $H_2PO_4^-$ and HPO_4^{2-}

e. H₂O and OH⁻

- e. the more concentrated the conjugate base.
- 11. Ammonia (NH_3) acts as a weak base in aqueous solution. What is the acid that reacts with this base when ammonia is dissolved in water?
 - a. none, there are no acids in pure water
 - b. H₂O
 - c. NH_4^+
 - d. trick question, because no acids are present, ammonia cannot act as a base
 - e. oxygen that always is dissolved in water
- 12. The base ionization constant K_b describes which of the following reactions for a weak base, B, in aqueous solution? (Note: often the base will be anionic rather than neutral, but "B" here is meant to represent anionic or neutral bases, which will gain one H and become one charge unit more positive whether starting neutral or anionic.)

a.	$B + H^+ \underset{\longrightarrow}{\longleftarrow} BH^+$	d.	$B + OH^{-} \iff BH^{-} + O^{2-}$
b.	$B + H_3O^+ \longleftrightarrow BH^+ + H_2O$	e.	$BH^+ + OH^- \longleftrightarrow B + H_2O$
c.	$B + H_2O \iff BH^+ + OH^-$		

Recognizing Strong versus Weak Acids; Recognizing Basic versus Nonbasic

- 13. Which of the following *is* a *strong acid*?
 - a. HNO_3 d. HCO_3^- b. H_2S e.HOCI
 - c. HNO₂
- 14. Which one of the following is a strong acid?
 - a. nitrous acid, HNO₂

d. hydrofluoric acid, HF

- b. sulfurous acid, H₂SO₃
 c. carbonic acid, H₂CO₃
- e.
- e. perchloric acid, $HClO_4$
- 15. Which one of the following is *not* a strong acid?
 - a. nitric acid, HNO₃
 - b. sulfuric acid, H_2SO_4
 - c. carbonic acid, H₂CO₃

- d. hydrochloric acid, HCl
- e. perchloric acid, HClO₄
- 16. Which of the following compounds **cannot** be a Brønsted–Lowry **base**?
 - a. OH⁻ d. NH₄⁺
 - b. H_2O e. SH^-
 - $c. \quad \mathrm{NH}_3$

17. Each of the following pairs contains one strong acid and one weak acid **EXCEPT**:

- a. H₂SO₄ and H₂CO₃
- b. HNO_3 and HNO_2
- c. $HBr and H_3PO_2$
- d. HSO₄⁻ and HCN
- $e. \quad HCl \ and \ H_2S$

18. Which <u>one</u> of the following is NOT <u>basic</u>?

a.	OH ⁻	d.	SO_4^{2-}
b.	NO ₃ ⁻	e.	HPO_4^{2-}

c. NH₃

19. Which <u>one</u> of the following <u>is basic</u>?

a.	Cl	d.	HSO ₄
b.	NO_3^-	e.	SO_4^{2-}
c.	ClO ₄		

pH Calculations; Relationships between pH and pOH

- 20. If the pH of a solution increases by 2 units (e.g., from 1 to 3), then the ratio of the new to the original hydronium ion concentration is
 - a. 2/1 d. 1/100.
 - b. 100/1 e. 1/1, unchanged
 - c. 1/2

21. When $[H^+] = 1.0 \times 10^{-7} M$ in water at 25°C, then

a. pH = 1.

d. $[OH^{-}] = 1.0 \times 10^{7} M.$ e. $[OH^{-}] = 0 M$.

b. $pH = 10^{-7}$. c. $[OH^{-}] = 1.0 \times 10^{-7} M.$

22. When $[H^+] = 4.0 \times 10^{-9}$ M in water at 25°C, then _____

- a. pH = 9.40. d. pH = 8.40. b. pH = 7.00. e. pH = -9.40
- c. pH = -8.40.

23. A solution with pH of 9.50 has a pOH of _____

a.	9.50.	d.	23.5.
b.	0.50.	e.	19.0.
	1 50		

c. 4.50.

24. A solution with an [OH⁻] concentration of 1.20×10^{-7} M has a pOH and pH of

a.	6.92 and 7.08	d.	7.08 and 6.92
b.	1.00 and 13.00	e.	5.94 and 8.06

c. 5.35 and 8.75

25. A solution with a pOH of 4.3 has a $[H^+]$ of _____ a. $6.8 \times 10^{-9} M$. d. $2.0 \times 10^{-10} M$. b. $3.2 \times 10^{-4} M$. e. 4.3 *M*.

c. $4.8 \times 10^{-5} M$.

26. Which statement, A–D, is not correct? If all are correct, respond E. Pure water at 25°C has _____

- a. $K_{\rm w} = 1.0 \times 10^{-14}$.
- b. pOH = 7.
- c. $[H_3O^+] = [OH^-].$

- e. A–D are all correct.

d. pH = 7.

K_a: Sense + Calculations. Using K_a or pK_a to Calculate [H⁺] and/or pH; using pH to calculate K_a or pK_a

27. Solutions of each of the hypothetical acids in the following table are prepared with an initial concentration of 0.100 M. Which of the four solutions will have the lowest pH and be most acidic?

Acid	pK _a
HA	4.00
HB	7.00
HC	10.00
HD	11.00

- a. HA d. HD
 - e. All will have the same pH because the concentrations are the same.

c. HC

HB

b.

28. What is the hydronium ion concentration of a 0.010 M solution of acetic acid? K_a for acetic acid is 1.8 x 10^{-5}

- a. 1.8×10^{-3} b. 1.8×10^{-5} c. 4.2×10^{-4}
- c. 1.0×10^{-2}

29. What is the pH of a 0.010 M solution of acetic acid? K_a for acetic acid is 1.8×10^{-5}

- a. 2.74 d. 3.37 b. 4.74 e. 6.74
- c. 2.00
- 30. When values of K_a are small (e.g., 1×10^{-5}) and concentrations of weak acids [HA] are relatively large (e.g., 0.10 *M*), and assuming there is no other source of anion A⁻, the hydronium ion concentration of the solution can be calculated using which expression?

a.	$[\mathrm{H}^+] = K_\mathrm{a}$	d.	$[\mathrm{H}^+] = K_{\mathrm{a}}K_{\mathrm{b}}[\mathrm{HA}]$
b.	$[\mathrm{H}^+] = K_{\mathrm{a}}[\mathrm{HA}]$	e.	$[H^+] = K_a[HA]^2/[A^-]$
c.	$[\mathrm{H}^+] = (K_{\mathrm{a}}[\mathrm{HA}])^{1/2}$		

- 31. The first disinfectant used by Joseph Lister was called carbolic acid. This substance now is known as phenol, C_6H_5OH (p $K_a = 10.0$). What is the pH of a 0.10 *M* solution of phenol?
 - a. 3.5 d. 5.5 b. 10.0 e. 4.5
 - c. 6.5

32. The pH of a popular soft drink is 3.4; what is its hydronium ion concentration?

a.	$5.0 \times 10^{-4} M$	d.	$1.0 \times 10^{-7} M$
b.	$4.0 \times 10^{-4} M$	e.	$5.0 \times 10^{-5} M$
c.	$2.5 \times 10^3 M$		

- 33. The concentration of acetic acid ($pK_a = 4.75$) in vinegar is about 1.0 *M*. With this information, what do you predict the pH of vinegar to be?
 - a. 4.75 d. 7.0 b. 2.4 e. 5.35
 - c. 4.0×10^{-3}
- 34. Boric acid frequently is used as an eyewash to treat eye infections. The pH of a 0.050 M solution of boric acid is 5.28. What is the value of the boric acid ionization constant, Ka?
 - a. 5.25×10^{-6} d. 5.79×10^{-4}
 - b. 5.51×10^{-10} e. 5.33×10^{-12}
 - c. 5.43×10^{-8}

35. A 0.100 M solution of a monoprotic weak acid has a pH of 3.00. What is the pK_a of this acid?

- a.5.00d.9.99b.0.999e.6.00
- c. 3.00
- 36. The acidic ingredient in vinegar is acetic acid. The pH of vinegar is around 2.4, and the molar concentration of acetic acid in vinegar is around 0.85 M. Based on this information, determine the value of the acid ionization constant, K_a , for acetic acid.
 - a. 2.5×10^{-5} b. 5.0×10^{-5} c. 4.7×10^{-3} d. 1.9×10^{-5} e. 7.4×10^{-3}
- 37. Three acids found in foods are lactic acid (in milk products), oxalic acid (in rhubarb), and malic acid (in apples). The pK_a values are LA = 3.88, OA = 1.23, and MA = 3.40. Which list has these acids in order of decreasing acid strength?
 - a. LA > OA > MAd. OA > LA > MAb. LA > MA > OAe. MA > LA > OAc. OA > MA > LA
- 38. Use the following acid ionization constants to identify the correct decreasing order of base strengths.

		HF HNO ₂ HCN	$K_{\rm a} = 7.2 \times 10^{-4}$ $K_{\rm a} = 4.5 \times 10^{-4}$ $K_{\rm a} = 6.2 \times 10^{-1}$	0
a. b. c.	$CN^{-} > NO_{2}^{-} > F^{-}$ $NO_{2}^{-} > F^{-} > CN^{-}$ $F^{-} > CN^{-} > NO_{2}^{-}$		d. e.	$F^- > NO_2^- > CN^-$ $NO_2^- > CN^- > F^-$

K_b and pK_b, Base Strength, and using K_b or pK_b to Calculate [OH], pOH, pH, and/or [H⁺]

- 39. A cup of coffee has a hydroxide ion concentration of $1.0 \times 10^{-10} M$. What is the pH of this coffee?
 - a. 1.0×10^{-4} d. 7
 - b. 4 e. -10
 - c. 10

40. What is the concentration of [OH] in a 0.20 M solution of ammonia? The K_b value for ammonia is 1.8×10^{-5} .

- a. $3.6 \times 10^{-6} M$ d. $1.9 \times 10^{-3} M$ b. $1.8 \times 10^{-5} M$ e. $4.2 \times 10^{-4} M$
- c. 0.20 M

41. What is the pOH of a 0.20 M solution of ammonia? The K_b value for ammonia is 1.8×10^{-5}

- a. 4.44 d. 2.72 e. 3.38
- b. 4.74
- c. 0.70

42. What is the pH of a 0.20 *M* solution of ammonia? The K_b value for ammonia is 1.8×10^{-5}

- 9.56 d. 11.28 a. b. 9.26 e. 2.72
- c. 4.74

43. What is the hydronium ion concentration of a 0.20 M solution of ammonia? The K_b value for ammonia is 1.8×10^{-5}

- a. 2.8×10^{-10} d. 5.2×10^{-12} b. 5.5×10^{-10} e. 1.9×10^{-3}
- c. 1.8×10^{-5}

44. What is the pH of a 0.500 M solution of trimethylamine ($pK_b = 4.13$)?

a.	2.22	d.	4.42	
b.	11.8	e.	5.91	
c.	0.00609			

Miscellaneous problems involving Weak Bases and perhaps their Conjugates.

45. Phosphoric acid is a triprotic acid, ionizing in the following sequential steps:

$$\begin{array}{ccc} H_{3}PO_{4} + H_{2}O & \overleftrightarrow & H_{2}PO_{4}^{-} + H_{3}O^{+} & K_{a} \\ H_{2}PO_{4}^{-} + H_{2}O & \overleftrightarrow & HPO_{4}^{2-} + H_{3}O^{+} & K_{a} \\ HPO_{4}^{2-} + H_{2}O & \overleftrightarrow & PO_{4}^{3-} + H_{3}O^{+} & K_{a} \end{array}$$

Write the K_{b} expression for the base, sodium phosphate (Na₃PO₄)?

46. Phosphoric acid is a triprotic acid, ionizing in the following sequential steps:

 $H_3PO_4 + H_2O \iff H_2PO_4^- + H_3O^+$ $H_2PO_4^- + H_2O \iff HPO_4^{2-} + H_3O^+$ $HPO_4^{2-} + H_2O \iff PO_4^{3-} + H_3O^+$

Write the K_b expression for the base, sodium dihydrogen phosphate (NaH₂PO₄)?

47. Use the following acid ionization constants to identify the correct decreasing order of base strengths.

		HF HNO ₂ HCN	$K_{a} = 7.2 \times 10^{-4}$ $K_{a} = 4.5 \times 10^{-4}$ $K_{a} = 6.2 \times 10^{-10}$
a.	$CN^{-} > NO_{2}^{-} > F^{-}$		d. $F^- > NO_2^- > CN^-$
b.	$NO_{2}^{-} > F^{-} > CN^{-}$		e. $NO_2^- > CN^- > F^-$

c. $F^- > CN^- > NO_2^-$

48. Three acids found in foods are lactic acid (in milk products), oxalic acid (in rhubarb), and malic acid (in apples). The pK_a values are LA = 3.88, OA = 1.23, and MA = 3.40. Which list has the conjugate bases of these acids in order of decreasing strength?

a. $lactate > oxalate > malate$	d.	oxalate > lactate > malate
a. lactate > oxalate > malate	a.	oxalate > lactate > malat

- b. oxalate > malate > lactate e. malate > lactate > oxalate
- c. lactate > malate > oxalate

- 49. What is the pH of a 0.20 M solution of cubaramine? The K_b value for jaspersamine is 2.5×10^{-6} .

8

50. What is the pH of a 0.10 M solution of trimethylamine ($pK_b = 4.13$)?

51. How would you calculate K_b for the formate ion, given that the K_a for formic acid is 1.8×10^{-4} ? ($K_w = 1.0 \times 10^{-14}$)

a.
$$K_b = K_a \times K_w$$

b. $K_b = K_w/K_a$
c. $K_b = K_w - K_a$

- c. $K_{\rm b} = K_{\rm a}/K_{\rm w}$
- 52. What is the pH of a 0.20 M solution of jaspersamine? The pK_b value for jaspersamine 4.40.

53. What is the pH of a 0.15 *M* solution of weak acid ammonium bromide? The K_b value for ammonia is 1.8×10^{-5} .

a.	11.22	d.	5.04
b.	7.00	e.	10.08

c. 2.78

54. Phosphoric acid is a triprotic acid, ionizing in the following sequential steps:

$$H_{3}PO_{4} + H_{2}O \xrightarrow{} H_{2}PO_{4}^{-} + H_{3}O^{+}$$
$$H_{2}PO_{4}^{-} + H_{2}O \xrightarrow{} HPO_{4}^{2-} + H_{3}O^{+}$$
$$HPO_{4}^{2-} + H_{2}O \xrightarrow{} PO_{4}^{3-} + H_{3}O^{+}$$

Which equilibrium is most important in determining the pH of a solution of sodium phosphate?

a.	$HPO_4^{2-} + H_2O \iff PO_4^{3-} + H_3O^+$	d.	$H_2PO_4^- + H_2O \longleftrightarrow H_3PO_4 + OH^-$
b.	$H_3PO_4 + H_2O \iff H_2PO_4^- + H_3O^+$	e.	$2H_2O \longleftrightarrow H_3O^+ + OH^-$
c.	$PO_4^{3-} + H_2O \iff HPO_4^{2-} + OH^-$		

55. Solutions of sodium salts of the acids in the following table are prepared with an initial concentration of 0.500 *M*. Which solution will have the highest pH and be the most basic?

Acid	pK _a
HA	4.00
HB	7.00
HC	10.00
HD	11.00

a. NaA

- c. NaC
- d. NaD
- e. All will have the same pH because the concentrations are the same.

b. NaB

Getting Information about an Acid or Base Based on Ka or pKa or Kb or pKb of the conjugate.

56. What is the pH of a 0.20 M solution of sodium acetate? The K_a for acetic acid is 1.8 x 10⁻⁵?

57. What is the pH of a 0.40 M solution of sodium nitrite, NaNO₂? The pK_a for nitrous acid (HNO₂) is 3.35.

58. What is the pH of a 0.20 *M* solution of weak acid jaspersammonium bromide? The K_b value for jaspersamine is 4.0×10^{-5} .

59. What is the pH of a 0.10 M solution of weak acid trimethylammonium chloride? The $pK_b = 4.13$ for it's conjugate base triethylamine

Recognizing Acid/Base Properties when Ionics are Dissolved in Water

50. Aqueous solutions of	are basic.
--------------------------	------------

- a. NaF d. NaI b. NaCl e. KI
- c. NaBr

61. Which one of the following salts forms aqueous solutions with pH = 7?

- a. Na₂S d. NaNO₂ e. Na₂CO₃
- b. NaBr
- c. NaClO₂

62. Which one of the following salts forms aqueous solutions with pH = 7?

- a. NaCN d. NaH₂PO₄ b. NH₄Br e. Na₂CO₃
- c. NaNO₃

63. Which one of the following salts does **not** produce a **basic** solution when dissolved in water?

- a. NaOCH₃ d. NaNO
- e. NaHCO₃ b. NaHSO₄
- c. NaBrO₂

64. The pH of an aqueous sodium fluoride (NaF) solution is ______ because ____

- a. 7; sodium fluoride is a simple salt.
- b. above 7; fluoride is a weak base.
- c. below 7; fluoride reacts with water to make hydrofluoric acid.
- d. about 7; fluoride is a weak base, but produces hydrofluoric acid, and these two neutralize one another.
- e. 0; sodium fluoride is a salt not an acid or a base.

65. Which one of the following, A–D, is correct? If all are correct, respond E.

- a. K_2SO_3 is a stronger base than KHSO₃.
- b. K_2CO_3 is a weaker base than KHCO₃.
- d. Na_2HPO_4 is a weaker base than NaH_2PO_4 .
- e. All of these statements are correct.
- c. NaHSO₃ is a stronger acid than NaHSO₄.
- 66. Which of the following groups, A–D, consist of salts that all form basic solutions in water? (Ac = acetate) If none or all satisfy this criterion, respond E.
 - a. NaNO₃, NH₄CN, NaAc, NH₄Cl
 - b. Na₂CO₃, KCl, NaOOCH₃, NH₄Cl
 - c. Na₂CO₃, NaF, NaOOCH₃, NaCN
- d. NaHCO₃, NaF, NH₄Cl, Na₂SO₃
- e. None or all of the above.

1. A	34. B
2. B	35. A
3. A	36. D
4. D	37. C
5. <u>B</u>	38. <u>A</u>
6. B	39. B
7. A	40. D
8. C	41. D
9. B	42. D
10. B	43. D
11. B	44. <u>B</u>
12. <u>C</u>	45. $K_b = ([HPO_4^{2}][HO])/[PO_4^{3}]$
13. A	46. $K_b = ([H_3PO_4][HO^-])/[H_2PO_4^-]$
14. E	47. A
15. C	48. C
16. D	49. pH=10.85
17. D	50. <u>pH=11.44</u>
18. B	51. B
19. <u>E</u>	52. pH=11.45
20. D	53. D
21. C	54. C
22. D	55. <u>D</u>
23. C	56. pH = 9.02
24. A	57. pH = 8.48
25. D	58. pH = 5.15
26. <u>E</u>	59. <u>pH = 5.44</u>
27. A	60. A
28. E	61. B
29. D	62. C
30. C	63. B
31. D	64. B
32. <u>B</u>	65. A
33. B	66. C

General Chemistry II Jasperse Acid-Base Chemistry. Extra Practice Problems