Conjugate Acid Base Pairs Chem Worksheet 19-2

Name _____

An **acid** is defined as a proton (H⁺) donor while a **base** is a proton acceptor. The substance that is produced after an acid has donated its proton is called the **conjugate base** while the substance formed when a base accepts a proton is called the **conjugate acid**. The conjugate acid can donate a proton to the conjugate base, to reform the original reactants in the reverse reaction.

Acids donate protons
Bases accept protons

A proton is a hydrogen ion

$$HF + H_2O \leftrightarrows H_3O^+ + F^-$$
 acid base c. acid c. base

In the reaction above HF is the acid and H_2O is the base. The HF has given a proton to the H_2O , forming H_3O^+ and F⁻. Since the product H_3O^+ can donate a proton back to F⁻ it is labeled the conjugate acid, while the F⁻ is the conjugate base.

Example

Write an equation that shows NH3 reacting with HCl. Label the acid, base, and conjugate acid and conjugate base.

- Write reactants and transfer a proton from the acid to the base:

$$NH_3 + HC1 \Rightarrow NH_4^+ + CI^-$$
base acid c. acid c. base

Rewrite each equation. Identify the acid, the base, the conjugate acid, and the conjugate base in each of the equations.

1.
$$HCl + NH_3 \rightarrow NH_4^+ + Cl^-$$

2.
$$OH^- + HCN \rightarrow H_2O + CN^-$$

3.
$$PO_4^{3-} + HNO_3 \rightarrow NO_3^{-} + HPO_4^{2-}$$

4.
$$HCO_3^- + HC1 \rightarrow H_2CO_3 + C1^-$$

5.
$$HCO_3^- + OH^- \rightarrow H_2O + CO_3^{2-}$$

6.
$$NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$$

7.
$$C_2O_4^{2-} + HC_2H_3O_2 \rightarrow HC_2O_4^{-} + C_2H_3O_2^{-}$$

8.
$$HPO_4^{2-} + H_2O \rightarrow OH^- + H_2PO_4^-$$

Fill in the following table.

	Acid	Base	Conjugate Acid	Conjugate Base	Equation
9	HNO ₂	H ₂ O			$HNO_2 + H_2O \rightarrow NO_2^- + H_3O^+$
10	H ₂ O	F ⁻	HF	OH ⁻	
11					$NH_3 + HCN \rightarrow NH_4^+ + CN^-$
12			H ₂ O	ClO ₃	
13	HSO ₄	PO_4^{3-}			
14					$S^{2-} + H_2O \rightarrow OH^- + HS^-$
15	HCO ₂ H	OH			

- 16. Write an equation that shows the reaction of ammonia, NH₃ with hydrobromic acid, HBr. Label the acid, the base, the conjugate acid, and the conjugate base.
- 17. Write an equation that shows the reaction of phosphate ion, PO_4^{3-} , reacting with hydronium ion, H_3O^+ . Label the acid, the base, the conjugate acid, and the conjugate base.
- 18. Write an equation that shows the reaction of hydrogen sulfide, HS⁻ with hydroxide ion, OH⁻. Label the acid, the base, the conjugate acid, and the conjugate base.